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This paper deals with the Soret separation of a binary mixture in a cylinder subjected 
to an axial temperature gradient. The study is connected to an experiment designed 
to measure the Soret coefficient of an AgI-KI mixture corresponding to a moderate 
Prandtl number ( P r = 0 . 6 )  and a high Schmidt number (Sc = 60). I n  such an 
experiment the species separation is often hidden by a mixing effect due to the 
buoyancy-driven convection generated by a horizontal temperature gradient induced 
by some defect of the heating system. Here, such a defect is simulated by a slight 
misorientation of the cell with respect to the vertical ; a small inclination ( y  = 1") of 
the cell has been considered, but the results can be generalized for any other small 
y. For situations corresponding to a top heating and a positive Soret parameter, 8, 
two quite different regimes have been exhibited depending on the value of S.  For 
moderate S ,  the induced solutal buoyancy balances the imposed thermal buoyancy, 
slowing down the flow and giving a good separation rate. For small S this balance 
does not exist (except in the centre), leading to a remixing of the species and thus to 
poor separation (the separation would be still worse for negative S).  The smaller the 
(positive) Soret parameter is, the smaller the cell misorientation y has to be to allow 
a good separation rate. 

1. Introduction 
Several papers have been devoted to the experimental determination of the Soret 

coefficient of a binary mixture and various techniques have been proposed for it. In  
most of these experiments the mixture is placed in a container subjected to a 
temperature gradient, generally vertical. The top and the bottom of such a container 
have to be perfectly isothermal and horizontal in order to avoid a horizontal 
temperature gradient, which always generates convection and may cause some 
'undesirable ' remixing. 

The separation between the species that results from the Soret effect is measured 
by different kinds of techniques (direct concentration measurement, optical or 
electrical measurements, etc.). The results reported in the literature show large 
discrepancies (see Velarde & Schechter 1971), and even opposite signs of the Soret 
coefficient. Thomaes (1975) mentions that in contrast to the predictions of kinetic, 
thermodynamic and statistical theories, only a few systems have been found to have 
negative S.  Most of these discrepancies are attributed to convection (De Groot 1947; 
Agar & Turner 1960; Dulieu, Chanu & Walch 1981), which is difficult to suppress, 
particularly when a large temperature gradient must be imposed. 

Various apparatuses have been designed to limit the perturbating effect of such 
convection by using a porous disk (Sundheim & Kellner 1965) or numerous thin- 
walled tubes (Longree, Legros & Thomaes 1980), or by confining the convection to 
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a small part of the cell in order to neglect i t  (Legros, Van Hook & Thomaes 1968; 
Legros, Rasse & Thomaes 1970; J. Richter & H. Valenta 1986, private com- 
munication). 

As the convection is present in many other experiments, a lot of papers have been 
devoted to i t ,  mainly through a stability analysis of.the steady state of a mixture 
subjected to a vertical temperature gradient. Most of them concern the linear 
stability in horizontal (non-confined) layers (Platten & Chavepeyer 1972 ; Schechter, 
Prigogine & Hamm 1972; Schechter, Velarde & Platten 1974; Chock & Li 1975; 
Gutkowicz-Krusin, Collins & Ross 1979) and more recently in confined vertical 
cylinders (Crespo & Velarde 1982 ; G. R. Hardin & R. L. Sani 1983, private 
communication; Henry & Roux 1983; Hardin et al. 1988). A nonlinear stability 
analysis has also been done for horizontal layers by Platten & Chavepeyer (1976, 
1977), and for confined vertical cylinders by G. R. Hardin & R. L. Sani (1986, 
private communication). 

Furthermore, experiments have been performed to analyse the onset of convection 
and the flow structure of a mixture subjected to the Soret effect : Shirtcliffe (1969) for 
salt water, Verhoeven (1969) for mercury, Hurle & Jakeman (1971) for water- 
methanol, Caldwell (1973) for aqueous salt solutions, Olson & Rosenberger (1979) 
and Abernathey & Rosenberger (1981) for gases. Caldwell(l973) suggested measuring 
negative bhermal diffusion coefficients by observing the onset of thermohaline 
convection. 

Soret-driven thermosolutal convection has been suggested by Hurle & Jakeman 
(1969) to have an effect even in nominally pure liquids (e.g. in the experiments of 
Harp & Hurle 1968 and Verhoeven 1969). It is also found to affect crystallization of 
single crystals grown from melts containing a solute (Hurle & Jakeman 1971). This 
last assertion is confirmed by Chien & Mattes (1983) in a study of thermal (Soret) 
diffusion in the liquid-phase epitaxial growth of binary III-V compounds, like 
GaAs . 

Most of the previous theoretical studies have been devoted to the stability of 
stratified layers a t  rest in the following three cases: a container heated from below 
for positive and negative Soret parameter, S, and from above for negative S.  A direct 
simulation of supercritical situations also exists for the first and the third cases 
(Henry & Roux 1 9 8 7 ~ ) .  The second case would correspond to unsteady flows; i t  has 
so far only been numerically simulated for a simpler geometry (a rectangular 
container a t  S = -0.01, Pr = 10, Sc = 1000 and Ra = 3000) by Platten & Legros 
(1984). 

In the present paper only layers with a stable stratification in a cylinder heated 
from above are analysed, with emphasis on positive-&' cases. (A few negative S cases 
also are considered.) The primary goal is to show the difficulties inherent in the 
measurement of the Soret coefficient of a binary mixture, mainly for fluids 
corresponding to high values of the Schmidt number, Sc = v/D,  like the molten salts 
or liquid metals. As the experiments require strong temperature differences in order 
to achieve significant species separation, the smallest geometrical defect products a 
significant non-vertical temperature gradient and generates a buoyancy-driven flow 
which induces a remixing of the species and limits the Soret separation. To simulate 
such a defect, we consider the case of small cell-inclinations y (quasi-vertical 
cylinders) and analyse the flow structure and the remixing rate of a binary mixture 
for such small inclinations. We shall mainly consider the case y = 1'. 

I n  view of these difficulties for experiments a t  the ground level, several experiments 
have been planned in a space environment in order to reduce the natural convection 
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FIGURE 1. Differentially heated cylinder : definition sketch for dimensions, location coordinates 
and velocity components. 

(Bert et al. 1984; Bert, Moussa & Dupuy 1987; Malmejac & Praizey 1984; Praizey 
1987). In fact in a space environment the gravity is only reduced by a factor of 
103-104, and the convection is not always negligible; in addition, the orientation of 
the (residual) gravity vector with respect to the container is generally not known in 
advance. Two previous studies (Henry & Roux 1986, 1987a) related to experiments 
performed in space (Bert et al. 1987) have been devoted to the remixing process in 
horizontal and inclined cylinders for low-g conditions, i.e. for small Grashof numbers 
(0 < Gr < 10) for which the flow is typically of a ‘conducting’ type (the isotherms 
being only slightly distorted by the buoyancy-driven flow). For such moderate 
convection a reinterpretation of the experiments is possible through the calculated 
remixing rate. A secondary goal of the present study is to enable a comparison 
between the remixing rate in a cylindrical cell at  a small inclination y (with respect 
to the gravity vector go; see figure 1) in ground situations, and a t  any y in low-g 
situations (g - go). 

A more general aim of this study is to give new insights into double-diffusive 
convection when a direct coupling exists between the two diffusive processes. 
Following the argument given by Hurle & Jakeman (1969) about the Soret effect, 
even in normally pure liquid, this study could be relevant to crystal-growth 
techniques involving a vertical temperature gradient (such as the Bridgman 
technique). Soret diffusion was found by Hurle & Jakeman (1969) to cause 
oscillations in the case of unstable stratification; in our case, i.e. for stable 
stratification, i t  could generate a flow and thus a macrosegregation near the 
solidification front. 

We mainly consider values of S in the range 0 < S < 0.673. The aspect ratio of the 
cylinder A = L / R  ( L  length, R radius) is taken to equal 3. The values of Grashof 
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number are taken in the range 482 < Gr < 4820. The study is limited to the case of 
conducting walls, as we expect that the isotherms will not be too much distorted by 
the flow as long as y is small. 

Some of the results discussed herein were presented in Henry & Roux (1987 b ) .  This 
work is a summary of one part of the thesis of Henry (1986). 

2. Hypothesis and mathematical description of the model 
As in the usual simplified Boussinesq assumptions, physical properties (kinematic 

viscosity v, diffusivity K ,  and total density p )  are assumed to be constant, except in 
the buoyancy term where p is taken as a linear function of the temperature T’ and of 
the mass fraction X (of the heavier component) : 

p = p O [ l - a ( ~ - T O ) + p ( ~ - x O ) ] ,  ( 1 )  

where a and /3 are respectively the thermal and solute expansion coefficients, and an 
overbar denotes a dimensional quantity. 

Accounting for the thermal-diffusion (or Soret) effect, the usual phenomenological 
equation relating the mass flux, J,, to the thermal and solutal gradients is 

J ,  = - P D X ( l - X ) V T - p D V X ,  

where D and D’ are respectively the solute and thermal diffusion coefficients. 
The walls are assumed to be rigid and impervious ; both ends of the cylinder are 

kept a t  a fixed temperature (pc and ph). Along the conducting lateral walls the 
temperature varies linearly. 

We use the same scaling factors as in a previous paper (Henry & Roux 1986)) i.e. 
R and Gr v / R ,  for length and velocity. The reference quantities for temperature and 

with the overbar indicating a diinensional quantity. The dimensionless temperature 
and mass-fraction are taken as 

T-lf, 9 -go 
Tree Xree  

T=- , x=--=---- 

where X ,  is the initial mass-fraction at the mean temperature lf, = i(ph++c). The 
mass fraction is non-dimensionalized with a value corresponding to the rate of 
separation per unit length in the ‘perfect’ Soret case (without motion), giving the 
values +$A and -;A at,  respectively, the cold and warm ends. The rate of 
separation, ax/&, is then equal to 1 .  

We seek steady-state solutions, but in order to accelerate the convergence of our 
iterative algorithm, a false transient technique (see Leong & de Vahl Davis 1979) is 
used for the transport equations in 2, T and X ,  with different timescaling factors 
(respectively, R2/v ,  R 2 / ~  and R 2 / D ) .  The following dimensionless parameters 
previously considered by Henry & Roux (1986) are used: Soret parameter and 
Prandtl, (thermal) Grashof and Schmidt numbers, respectively defined as 

X0( 1 - X 0 )  Po’ V agR3(Th - Tc) V S =  , P r = - ,  G r =  , Sc=-. 
a D  K v2A D 
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Thus, from mass, momentum and energy balances (see Leong & de Vahl Davies 
1979 and Henry & Roux 1986) we obtain the following three-dimensional system 
expressed in terms of the vorticity vector Z(Z,,  Z,, Z 3 ) ,  T ,  X and the velocity vector 

(2) 

V(u ,  21, w )  : 
_ -  az - GrV x ( V x  Z)-V x (gT)+XV x (gX)-V x (V x Z) ,  
at 

= -Cr Pr V .  (T v) + V2T, (3) 

- = -GrScV.(XV)+VV2T+V2X, (4) 
ax 
at 

aT - 
at 

(5) v2v = - v x z. 
The associated boundary conditions are 

on the boundaries (rigid and not reactive) ; 

q z - o )  = $4, qz-A) = - ;A;  T = 0 a t  r = 1 

(perfectly conducting). 
The system (2)-(5) involves the classical condition, V .  V = 0,  corresponding to 

the Boussinesq assumption (quasi-incompressible fluid). The validity of such an 
assumption has been discussed by Henry & Roux ( 1 9 8 7 ~ ) .  

The finite-difference method used to solve the system (2)-(5) is basically the one 
developed by Leong & de Vahl Davis (1979); its implementation on a GRAY 
computer is given in previous papers (Smutek et al. 1984; Henry & Roux 1986). The 
code is used in its ‘false-transient’ version, which is well suited and efficient for 
steady-state situations ; but of course it would not converge if the flow was unsteady 
(the code would then have to be run in its fully transient version). All the results 
presented in this study correspond to steady-state flows ; they are obtained with the 
convergence criterion used by Henry & Roux (1986) (here, E = and with, 
respectively, 33,9  and 32 mesh points in the longitudinal ( x ) ,  radial ( r )  and azimuthal 
(8) directions. 

3. General results and comments 
We look a t  the absolute value of the mean mass fraction, X , ( k ) ,  in a z-plane 

a t  various mesh-point positions k (k = 1 corresponds to the hot endwall and 
k = 33 to the cold endwall). The global separation will be given by X m ( l ) ,  or by 
Xbot = X,( 1)/&4 which is a ‘measure’ of the ratio of the effective and ‘perfect’ 
Soret separation between the two endwalls. We mainly analyse the numerical 
results through velocity, isotherm and iso-mass-fraction fields in the vertical 
symmetry plane (denoted as the V-plane). For a quantitative interpretation of 
isotherm and iso-mass-fraction fields we need the position of the zero isocontour (it 
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is the one passing through the centre) and the isocontours spacing, DX, that is given 
for each graph (or DT which is always taken as 0.2). Together with v, we shall use 
- = v/(v/R); e.g. we will consider the maximum of the velocity in the V-plane, 

With respect to the signification of the limiting case S = 0, we must point out 
that this case involves two situations depending on whether $ equals zero or not. 
When S goes bo zero with $, Xref remains finite, thus indicating that a separation 
exists ( X  + X , )  even for S = 0, but this separation does not affect the motion 
(no solutal buoyancy forces). In the second case, where $ is finite, we have 
Xref = Sa(Th-c)/(,8A); thus X,,, goes to zero with S, but X still has a finite value 
if the separation vanishes ( X  tends to X o )  and can be interpreted as 

Vmax. 

thus X represents the derivative (X,)  a t  S = 0, from which the actual separation can 
be obtained for any sufficiently small S. 

The temperature fields drawn in the V-plane are given in figures 2 ( a )  and 2 (b) for 
two extreme convective situations : Gr = 482 for S = 0.673 and Gr = 4820 for S = 0. 
In the first case, characterized by a higher value of S, figure 2(a) shows that the 
isotherms remain practically parallel to the endwalls. In the second example (see 
figure 2b), the isotherms appear to be slightly distorted by the flow, but this is 
enough to have a significant effect on the convective flow. 

In figures 3 and 4 respectively we plot pmax and Xbot versus S, for three values of 
Gr : 482, 1446 and 4820. These figures show two regimes ; one corresponding to small 
values of S (0 < S < 0.03) for which vmax reaches high values (increasing with Cr)  and 
the other corresponding to higher S (S 3 0.05) for which pmax remains small and the 
separation is good (X,,, close to 1) for any value of Gr. We shall separately analyse 
these two regimes in detail. 

For a better understanding of the physical mechanisms, it is useful to consider the 
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FIGURE 3. Maximum of the velocity tw. Soret parameter, 
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FIGURE 4. Global species separation, X,,, 8s. Soret parameter, for various Gr. 

expressions for the two contributions (thermal and solutal) of the buoyancy forces, 
FT and F,, in the V-plane. These expressions can be written as follows for y = 1": 

and 

FT =-T,sin(l")+T,cos(lO) 

F, = X[X,sin (1")-X, cos (lo)]. 
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It is also interesting to consider the angle ax of the zero-mass-fraction contour with 
the vertical (or the angle px so that ax = px+90"-y). Similarly, for the isotherm 
T = 0, we can consider the angles aT and PT. In that case, we have 

Fx = S X ,  cos (ax) = - S X n  sin ( P x - y )  

FT = -T, cos (aT) = T, sin (pT - y ) ,  

(8) 

(9) and 

where the subscript n denotes a derivative in the direction normal to  the zero-X or 
zero-T contour. Thus, the sign of 4 changes when ai 2 90" (or Pi 2 y ) ,  i.e. when the 
zero-X or zero-T contour overpass the horizontal. As S > 0 and T, < 0 (T, N - l),  
Fx acts in the same way as FT when the mass-fraction field is slightly distorted 
(PAY < y ) ,  but acts in an opposite way as soon as px 2 y (i.e. here, for a deformation 
of the mass-fraction contours just higher than 1'). 

For S 2 0.05, as T, is close to -1  and T, is close to 0, we have 

FT = sin (1"). (10) 

For small S a slight isotherm deformation, PT, is sufficient to slow down the flow 
or stop it (for PT = y) .  

4. Small Soret parameter (0 6 S 6 0.03) 
The velocity fields presented in figure 5 show that the fluid motion in the V-plane 

corresponds to a single roll flowing parallel to the lateral wall and recirculating a t  the 
endwalls. When Gr increases, the flow seems to concentrate nearer the lateral wall, 
leaving a large area of dead fluid in the centre. The flow intensity given by pmax is 
not proportional to Gr (even for S = 0), in contrast to the case of low Gr considered 
in our previous studies. 

These characteristics suggest that we have a balance between buoyancy and 
inertia forces, that would give a variation of rmax as Gri, for S = 0. In fact, the 
exponent of Gr in the expression of vmax is clearly found to be less than +. In addition, 
a direct comparison between the different terms of the &projection of equation (2), 
in the V-plane, for S = 0, indicates that the balance in this plane is realized between 
buoyancy and viscous forces, which is more consistent with the fact that such 
situations are only slightly convective. 

Thus the zero velocity in the centre is mainly due to the vanishing of buoyancy 
forces. For S = 0, where only the thermal contribution plays a role, we can verify 
that the isotherm deformation in the centre, PT, is close to 1". This deformation 
(p, = 1" in the centre) exists over a longer r-distance when Gr increases. Near the 
lateral walls, the conducting boundary conditions involve isotherm deformation in 
the reverse sense and favour the motion. In  fact, the main motion is generated there, 
and cannot correspond to a usual ' core-driven ' flow. 

Although the cylinder is not long ( A  = 3), there is an area in the central region 
where the flow is uniform (z-independent). This domain corresponds, in figure 6, to 
the portion of the IX,(z)l/$A curves having a constant slope; however, iso-mass- 
fraction contours are strongly distorted by the motion, as shown in figure 7,  for the 
V-plane. These deformations affect the entire cylinder as shown through the three- 
dimensional representation of the zero-mass-fraction contour, plotted in figure 8 for 
S = 0 and in figure 9 for S = 0.02. The deformations increase with Gr, being already 
important a t  Gr = 482 for S = 0. In all cases, they are associated with a very poor 
separation rate, as observed in figure 6. 
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s = 0.02 

s = 0.01 

s=o 

Gr = 4820 

FIGURE 5 .  Velocity fields in the V-plane, for small Soret parameters (0 < S < 0.02). 

For S = 0 and 482 < Gr < 4820, we observe that Px > 90' in the centre. For small 
but finite S, iso-mass-fraction contours are still strongly distorted and generate a 
force opposite to FT (as PX = 90" and y = lo, i.e. PX > y ) ,  but as S and (iXY/an) are 
small, F, is less than FT and slightly slows down the motion, which always presents 
the same structure (with a central region at rest). This leads to a smaller deformation 
of the X-contours and a better separation rate, but this influence is only significant 
for very small values of Gr (see figure 7). For high Gr, the separation tends to an 
asymptotic limit, as shown in figure 10. Such a limit, close to 0.17, is quite similar 
to the one observed by Henry & Roux (1986) for y = 90" when Gr - 10. 
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FIGURE 6. Evolution of the mean mass-fraction lXml/($4) along the axis (in terms of k ) ,  for 
small Soret parameters: ( a )  S = 0.02; (6) 0.01 ; (c) 0. 
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Gr = 482 

23" 
Gr = 1446 

1'-3 
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s = 0.02 

s = 0.01 

s=o 

FIGURE 7. Iso-mass-fraction contours for small 8: DAY = 0.1, except a t  Gr = 1446 for S = 0 where 
DX = 0.09 and a t  Gr = 4820 where DX = 0.09 for S = 0.02, DX = 0.08 for S = 0.01 and DX = 0.07 
for S = 0. 

5. Moderate Soret parameter (0.05 < S < 0.673) 
5.1.  General comrnents 

The velocity fields in the V-plane (see figure 11)  present some differences for higher 
S (0.05 < S < 0.3), compared to that presented in figure 5 for 0 < S < 0.02, but 
they all show a central zone a t  rest. Some particle tracks in the V-plane, given in 
figure 12 for S = 0.673, exhibit again more clearly such a central zone, mainly for 
high Gr (Gr = 4820). For high Gr, figures 11 and 12 also show a recirculating zone 
(contrarotative rolls) near the two endwalls. 

The iso-mass-fraction contours (in figure 13) exhibit a uniform inclination (except 
near the lateral walls); this structure is quite different from the one (of remixing 
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FIGURE 8. Three-dimensional description of the zero-mass-fraction contour at  S = 0. 
(a)  Gr = 482; (b )  1446; (c) 4820. 

FIQURE 9. Three-dimensional description of the zero-mass-fraction contour at S = 0.02. 
(a )  Gr = 482; ( b )  1446; (c) 4820. 

type) observed in figure 7 for low S.  The three-dimensional representation of the 
zero-X contours (figure 14) shows that this characteristic (uniform inclination) is 
valid for the whole cylinder (except near the lateral walls). In  addition, we can see 
that the value of px that corresponds to this inclination decreases when S increases. 

In any part of the cylinder the velocity appears to be small compared with that 
of the case S = 0 (purely thermal buoyancy), meaning that FT is completely 
neutralized by F,, whose sign is opposite in any case (px > 7). Using (8) and (lo),  
that (mechanical) equilibrium condition can be written as 

FT + E;, = sin (lo) - S X ,  sin (px - lo) = 0. (11) 
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I I I I I I I 1 I 
482 1446 4820 

Gr 

FIGURE 10. Global species separation, X,,, us. Or, for different Soret parameters. 

When X, - 1, which is true for moderate S, we obtain 

p X - 1' = arcsin [sin (1")/S] - I0/S. (12) 

Thus (Px - 1") which represents the inclination of the iso-mass-fraction contours with 
respect to the horizontal, on the axis, is inversely proportional to S. To confirm this 
interpretation, we compare the numerical value of this inclination (/?, - lo) with (12) 
in table 1. The computed value of (PLY- lo) for 8 = 0.03 is also mentioned in table 1, 
but in fact (12) does not apply correctly to such a small S. Nevertheless, table 1 shows 
that px increases when S diminishes, and leads to a worse separation rate (X, or 
X,), which in turn requires a higher px to reach the equilibrium given by (1 1). To be 
more rigorous we would have to  take the isotherm deformations, PT, into account 
and thus use (9) instead of (10) ; the equilibrium (1 1) would be more easily satisfied 
but qualitatively the result would be the same. 

This mechanical equilibrium corresponding to weak flows and inclined mass- 
fraction field allows good separation rates. The perturbation of the global separation 
Xbot remains small (X,,, close to 1) as long as the X-contour inclination is not too 
great. We can see, in figure 15, that this separation is excellent for S 2 0.3. It is still 
good for 0.1 < 9 < 0.3 and acceptable for S = 0.05. Thus, at y = lo, the limit for 
performing an accurate measurement of the Soret coefficient would correspond to 
S = 0.1, which leads to a limit value px - 10' for the X-contour inclination. 

One could think that the balancing of F, and FT given by the condition (1 1) could 
make possible an 'overstable ' motion such as the one occurring in double-diffusive 
systems (when the diffusivities are sufficiently different) for cylinders heated from 
below and negative S (Henry & Roux 1983, see figure 7), and which could correspond 
to the oscillations reported by Hurle & Jakeman (1973) for slightly inclined (small 
aspect ratio) cylinders. In fact, such an oscillatory behaviour has never been 
observed in all the cases considered herein, but we can note that the convergence of 
numerical solutions is always more difficult to achieve when this balancing occurs 

7 FLM 195 
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Gr = 482 

S = 0.3 

_ - _  . . . 

Gr = 1446 Gr = 4820 

S=O. l  

s = 0.05 

FIGURE 11. Velocity fields in the V-plane, for moderate Soret parameters (S = 0.05, 0.1 and 0.3) 
at various Grashof numbers. 

than otherwise (when the driving forces are balanced by the viscous forces). I n  our 
system, the flow is generated by solutal and thermal buoyancy forces created by the 
inclination of the X -  and T-fields due to  the cell inclination. But a further evolution 
for both thermal and solutal fields will tend to  stabilize the system: the generated 
flow creates a deformation of the T- and X-fields which in turn generates restoring 
forces acting in the same direction to slow down this flow or even stop it. 

5.2.  InJluence of the walls 
In  the main part of the cylindrical cell the velocity is small, but as already mentioned 
a significative flow exists near the walls. 
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FIGURE 

W 
'article tracks in the V-plane a 

I 

S = 0.673. The particles are released at different points 
( T , z ) :  (a) for Gr = 482, at (r = 0.75, z = 1.5) and (T = 0.9, z = 1.5); ( b )  for Gr = 4820, at ( T =  0.5, 
z = 1.0) and ( T  = 0.5, z = 0.35). 

5.2.1. On the lateral walls, the no-mass flux condition leads to 

T,+X, = 0. (13) 

Therefore, as the isotherms are not deviated by the flow (T, - 0), the condition (13) 

which means that the iso-mass-fraction contours, perpendicular to  the lateral walls, 
are not deformed by the flow. In  particular, in the V-plane, we have Px = 0" (PX < y ) ,  
and then (8) shows that solutal buoyancy, F,, is smaller than FT but acts in the 
same way. Thus a flow is generated in a small layer adjacent to the lateral wall; the 
thickness of this layer diminishes when S increases (figure 11 j, because the inclination 
of the X-contours in the central region needed for the equilibrium (1  1 )  is weak. Thus 
the transition to the 'unperturbed' zone near the lateral wall is rapid. This thickness 
is also smaller for higher Gr (figure 11). (Equilibrium reached on a larger part of the 
cell.) 

5.2.2. On the endwalls, the no-mass flux condition leads to 

T,+X, = 0, 

and, as the isotherms are not deviated by the flow (T, - - l), the condition (15) 
gives 

In that case, using (7)  and ( lo) ,  the total buoyancy force can be written as 

x,- 1. (16) 

F = FT+Fx = sin(l0)+X[sin(i0)-X, cos(l")]. ( 1 7 )  

In  our study the solutal and thermal buoyancy forces are often opposite (as P X  > y ) ,  
but the thermal contribution generally remains higher. In  fact, near the endwalls, we 
can observe the reverse situation with a (small) contrarotating flow near the endwalls 
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FIGURE 13. Iso-mass-fraction contours for moderate Soret parameters : DX = 0.2. 
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FIGURE 14. Three-dimensional description of the zero-mass-fraction contour: ( a )  S = 0.1, 
Gr = 4820; ( b )  S = 0.05, Gr = 482 ; (e) S = 0.05, Gr = 4820. 

Gr 

S 482 1446 4820 Equation (12) 

0.673 1.5" 1.5" 1.5" 1.5" 
0.3 3.3" 3.4" 3.4" 3.3" 
0.1 10.2" 10. 1" 10.3" 10" 
0.05 21.4" 20.9" 21.7" 20" 
0.03 49.4" 33.3" 

TABLE 1. Values of (px-l) in degrees obtained a t  different Gr, and from (12) 

- - 

( F  and FT being of opposite sign). This can be seen for Gr = 4820, in figure 1 1  with 
S = 0.3 and more clearly in figure 12 with S = 0.673. This contrarotating flow occurs 
when lFxl > FT. The ratio RF = lFxl/FT in the middle of the endwall is given in figure 
16 as a function of S for different Gr. The existence of a contrarotative roll in the 
V-plane is well observed near the endwalls in case when R, > 1 ; but this condition is 
not strictly sufficient, the ratio RF having to be high enough. If R, is only slightly 
greater than 1, we observe that the flow slows down only near the endwalls, e.g. for 
Gr = 4820 with S = 0.1 and for Gr = 1446 with S = 0.3. The same behaviour is 
observed when R, is slightly smaller than 1, as for Gr = 1446 with S = 0.1 and for 
Gr = 482 with S = 0.3. 

For moderate S the flow in a quasi-vertical cylinder is mainly driven near the 
walls ; the same behaviour was observed in the steady basic state of double-diffusive 
regimes by Paliwal & Chen (1980b, figure 2). 
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FIGURE 16. Ratio of solutal and thermal buoyancy forces, F,/F,, near the endwalls in terms of 
the Soret parameter, for various Grashof numbers. 

6. Transition domain 
It is interesting to look a t  the transition between the two domains described in the 

previous sections as they exhibit quite different flow behaviours. 
Figures 3 and 4 show that the domain of moderate S (for which an equilibrium has 

been seen to exist in the central region) can also be characterized by v,,, and Xbot 
being independent of Gr. We can give a theoretical extreme limit of this domain by 
considering that F, cannot exceed the value corresponding to vertical X-contours, 
i.e. (Px- 1") = 90". Taking X, = 1, the equilibrium expressed by (11) would then be 
satisfied when 

sin (lo) 
sin (90") 

= 0.01745. S 2  

In fact X ,  diminishes with the inclination and X ,  < 1 for (px- 1") = 90"; thus this 
limiting value of S is not very accurate but appears qualitatively acceptable. 

Another means to estimate the transition domain is to calculate Fx in the centre 
and to compare it to FT which is assumed constant and equal to sin (lo), as in (10). 
The comparison is given in figure 17 which indicates that an obvious equilibrium is 
obtained down to S = 0.05. Below this value the transition clearly occurs for high Gr 
(Gr = 4820 in the interval 0.02 < S < 0.03) while it appears smoother for smaller Gr. 

This transition can also be seen from a phenomenological point of view. For 
moderate S, the theoretical inclination px given by (12) to reach the equilibrium is 
weak, X ,  is close to  1 ,  and thus (11) is well satisfied. When S diminishes, px given 
by (12) increases, inducing a reduction of X , .  The value needed to reach the 
equilibrium, which is given in that case by ( l l ) ,  is still higher. In addition, as px 
increases, the thickness of the layer adjacent to the lateral walls increases and the 
central zone of constant X-contour inclination reduces. As we have seen before, when 
S is too small (S < 0.03) the equilibrium cannot be maintained, except in a very small 
domain near the centre, owing to  a slight deformation of the isotherms. 
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FIGURE 17. Ratio of solutal and thermal buoyancy forces, F,/F,, near the centre in terms of 
the Soret parameter, for various Grashof numbers. 

7. Influence of the main parameters 
7 . 1 .  Grashof effect 

The influence of Gr, in the range 482 < G r  < 4820 considered herein, is not 
important. For the high values of Gr, i.e. values inducing a strong deformation 
(p, = 90") of the zero-S contour in the limit case S = 0, the extent of the 
equilibrium domain will be as mentioned in the previous sections, with quite similar 
values of S for the transition. 

For smaller Gr, the differences observed between the two domains will be less 
important, as the deformation is smaller for S = 0. That confirms previous results 
obtained by Henry & Roux ( 1 9 8 7 ~ )  for very small Gr ( 1  < Gr < 3), for which no 
transition was observed on the curves Xbot versus S (X,,, being already close to 1 for 
S = 0). Furthermore, for small enough Gr (as Gr = 1 )  where pX - 0 (i.e. pX < y ) ,  
F, has the same sign as FT and tends to reinforce the motion due to FT (but this 
motion remains weak). 

Finally, on the domain of moderate S ,  the separation will be good for any value 
of Gr. But, for small Gr, such a good separation corresponds to weak FT and F,, while 
for high Gr it corresponds to an equilibrium between opposite values of FT and F,. 

7 .2 .  Aspect-ratio eSfect 

Some numerical simulations which have been done for higher A (namely A = 6 )  show 
that increasing A does not have a large influence on the behaviours discussed in the 
previous sections. 

For the domain of moderate S ,  these behaviours are identical (corresponding to an 
equilibrium between FT and F, and leading to an excellent separation (X,,, = 1)). 

For small S (up to the transition) where a certain longitudinal motion exists, the 
behaviours are slightly different as the confinement is different, but the main effect 
of A on Xbot is similar to the one discussed in our previous paper for small Gr (Henry 
& Roux 1986), i.e. Xbot diminishes when A increases, for a given Gr. 

7 .3 .  InJluence of the cell inclination 

The interpretation of the results for y = 1" can be extended to any (small) value of 
y. The expressions ( 1  1) and (12 )  for the equilibrium are easily generalized by 

(19 )  FT + F, = sin ( y )  - S X n  sin (p, - y )  = 0. 
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When X ,  - 1,  which is true for moderate 8, we obtain 

px- y = arcsin [sin ( y ) / S ]  N y/S.  (20) 

Consequently, for any small y, we shall have the two domains of S mentioned 
before, but the localization of the transition will depend on y .  We shall mainly 
consider the equilibrium-state domain (higher S )  which gives a good separation. 

For a given y ,  we can calculate the lower limit value, Slim, of this equilibrium-state 
domain. We have seen that this limit would correspond to px - 10" and X ,  - 1 .  
According to (2O), we have 

Slim = sin (y)/sin (10"- y ) .  (21) 

For small y ( y  < 1"). (21) gives 
S l im N Y / l o o  

A good separation is only possible for S > y /  10" ; thus for a smaller S, a smaller value 
of y is required. 

On the other hand, for higher y (1" d y < lo*), Slim increases following (21). A sort 
of limit is exhibited by (2 l ) ,  for y = lo", which indicates that beyond this value (or 
a value close to 10") a good separation will be impossible for any S. 

It is also interesting to consider the effect of the cell inclination for a given S ,  and 
for high Gr. For y = O", the separation is perfect for any S 2 0 (stable stratification). 
As soon as y increases, FT becomes significant and generates a motion. In the case 
where the solutal effect is uncoupled (8 = 0), this motion is strong (for high G r )  and 
leads to a strong deformation of the X-contours. If S + 0, the solutal coupling slows 
down this motion and thus, for S not too small, an equilibrium can be reached in a 
certain domain of y ,  0 < y < ylim. This limit cell inclination, ylim, is small for small 
S and will increase with 8, but it cannot exceed 10". In  conclusion, it will only be 
possible to obtain a good separation, for high Gr, on a smaller and smaller interval 
(0 < y < ylim) when S decreases. 

7 . 4 .  Comments on the cases of negative S 
We did not systematically consider the case of negative S ;  but we can given some 
general comments for that case. A first difference from the case of positive Soret 
effect, shown by the linear stability study previously done (Henry & Roux 1983), is 
that a critical value of Gr for the onset of convection a t  y = 0" exists. (Gr, is 
decreasing with S.) But, results presented in a previous paper by Henry & Roux 
(19873) for supercritical Gr (see their figure 5) show that the concentration fields a t  
y = 1" and y = 0" are about the same, even for slightly supercritical Gr.  Additional 
computations carried out for a highly supercritical Gr (Gr = 482) at S = -0.1 (for 
which Gr, is close to 20) and y = 1" give Xbot = 0.208 (to be compared to X,,, = 0.315 
a t  S = 0, in figure 4). Thus, it is easy to imagine that the graphs of figures 3 and 4 
would simply correspond, for negative S, to a smooth continuation of the one 
calculated for positive 8. 

In  fact, in the previous study (Henry & Roux 1987b), we have shown that for 
Gr < 1.33, no instability occurs at  y = 0", and for any y $; 0" a positive S increases 
the flow. In these cases the separation a t  y = 1" is good for any S (S > - 1 ) .  

For larger Gr, there is a negative critical S ( -  1 < S,  < 0) beyond which an 
instability occurs at  y = O", and, a t  least in the vicinity of y = O", a positive S 
decreases the flow. In that case, the bifurcation obtained at  y = 0" for S ,  (sudden 
decrease of Xbot) will give with y = 1" a smoother imperfect bifurcation beginning 
for values of S slightly higher than 8,. For small Gr, as Gr = 3 (8, = -0.45), this 
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imperfect bifurcation begins for negative values of S and then does not affect the 
values of Xbot for S > 0. But for larger Gr (corresponding to small ISJ) as Gr 2 482, 
this imperfect bifurcation begins or even occurs mainly in thc domain of positive S ,  
giving the observed variations drawn in figure 4. 

Finally, with y = lo, except for very small Gr (Gr < 1.33), the separation for 
negative S (for given Gr, P r ,  Sc. and A )  will be worse than for the case S = 0 (this 
corresponds to the evolution of the imperfect bifurcation). With y = OD, the 
separation is perfect down to the (negative) critical S, and decreases quickly 
afterwards : a good approximation is then given for such situations (not too close to 
the critical one) by the corresponding results with y = 1". 

7.5. Other comments 
We wish now to answer an interesting question of one of the reviewers about the 
possible occurrence of layering regimes which correspond to a double-diffusive 
instability of stationary type occurring in a stably stratified fluid layer subjected to 
lateral temperature gradient. This layering phenomenon was reported for example 
by Thorpe, Hutt  & Soulsby (1969), Hart (1971, 1973), Turner & Chen (1974), 
Huppert & Turner (1981). It has been emphasized by Paliwal & Chen (1980a, b )  in 
two companion papers covering experimental and theoretical (stability analysis) 
approaches in the case of an inclined fluid layer confined within two parallel walls ; 
they specially considcred the limit case of a vertical fluid layer subjected to a 
horizontal temperature gradient. A condition for the layering occurrence is that  a 
steady basic state (with density-stratified fluid) should exist prior to  the onset of 
instabilities. We have seen in 335.1 and 7.3 that, for inclined cylinders with Soret 
effect, this condition is only satisfied for small cell inclinations, y ,  when S is not 
too small; i.e. when S > Slim, where Slim is given by (23) (for large aspect ratios 
( A  2 3). the limit value of S is Slim = 6y, with y expressed in radians). In  such 
cases, the values of the thermal and solutal Rayleigh numbers, according to the 
definitions given by Paliwal & Chen (1980b), can be expressed as R, = 16GrPr sin y 
(based on the destabilizing horizontal component of the temperature gradient) and 
R, = 16GrPrS cosy, 

Then, in our case, a condition for the layering occurrence is 

R, > 6R,, (33) 

and thus the instability condition derived by Paliwal & Chen (1980b) for a vertical 
fluid layer subjected to a horizontal temperature gradient, which corresponds to a 
curve slightly below the first diagonal in the range lo2 < R, < lo5 (see figure 5 of 
Paliwal & Chen 1980b), is never satisfied. (See also figure 3 of Hart 1971.) 

Furthermore we can see that for an initially given (stable) solutal stratification the 
layering is generally obtained by varying (increasing) independently the lateral 
thermal gradient. In our case, the increase of AT (which generally allows the 
instability to be reached) increases R,, but also R, by the same factor (due to the 
Soret effect) and thus in the stability diagram of Paliwal & Chen (1980b, figure 5) 
the functional curve ( R T ,  R,) would almost be parallel to the threshold stability line 
without crossing it. We can also note that in our case we have a vertical component 
of the temperature gradient which is stabilizing and still reinforces the role of R,. We 
therefore conclude that layering regimes are not to be expected in the case of long 
cylindrical cells with Soret effect. 
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8. Comparison with previous results and discussion 
We can compare our results to those of Dulieu et al. (1981) who carried out a two- 

dimensional numerical study of the convection in a parallelepipedic cell heated from 
the top and subjected to a small inclination. They linearized the governing equations 
with respect to the inclination angle, y ,  and solved this simplified problem by using 
a Galerkin method. They obtained an estimation of the Soret coefficient, D I D ,  that 
could be observed. This value ( D / D ) o b s  is smaller than the one corresponding to a 
perfect separation without convection, the reduction being expressed as a quadratic 
function of the perturbation parameter : 

where a, is a function of the parameters Ra,  k and a defined as 

The ratio (24) is similar to Xbot in our computations. For a given Ra (Ra  = 8000), 
Dulieu et al. (1981) give the variation of a, in terms of a for various aspect ratios, 
0.1 < k < 10. Their figure 2 exhibits two domains in a (similar to our two domains 
in S) with a transition zone between a = 1 and a = 10; a, is less than for 
a > 10. For a = 10, which corresponds to S = 0.1 for SclPr = 100 (a quite general 
value for liquids), the expression (24) gives a relative difference for the Soret 
parameter close to 4%, for an inclination y = lo. This result well agrees with the 
limiting value S = 0.1 given by (22) with y = 1’; in that  case Xbot = 0.975 (i.e. the 
separation is only 2.5% smaller than the perfect one). For high confinement (for 
example k = O . l ) ,  their a, remains small (for any a) indicating small remixing; this 
is not in contradiction with our results as their parameter values (Ra  = 8000 and 
k = 0.1) correspond, in our study, to a small value of Gr (Gr = 21 a t  A = 10) leading 
to an unperturbed situation for any S. 

Dulieu et al. (1981) also give variations of a, in terms of Ra,  for a = 0 and a = 0.1, 
showing an increase of a, with Ra, but with a tendency to reach a limiting value for 
high Ra (see their figure 4). These curves can be compared to our results giving Xbot 
in terms of Gr, for different S ,  in figure 10; an increase of a, corresponds to a 
diminution of Xbot, as shown by the expression (24). 

We can also comment the comparisons done by Dulieu et al. (1981) with the results 
obtained by Agar & Turner (1960). 

( a )  We agree with the stabilizing effect of increasing a (or SSclPr),  but we can 
add some precision, pointing out that the restabilizing solutal buoyancy forces are 
proportional to the product Gr SSc. For small S, where the equilibrium does not exist 
(except in the centre), the iso-mass-fraction deformation and Xbot will depend on Sc. 
But for moderate S ,  where the equilibrium is reached in almost the entire cylinder, 
the values of Sc (as soon as they are strong enough to permit a strong deformation 
of the concentration field) will not influence the results which will mainly depend 
on S. 

(b)  Dulieu et al. (1981) mention that for given a and k, an increase of Ra does not 
favour the separation. In  fact this is true for small S ,  while for higher S (where an 
equilibrium can be reached) an increase of Gr (or Ra)  slightly strengthens the motion 
but does not significantly change the value of Xbot. 
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( c )  Agar & Turner (1960) indicate that the influence of the convection has to be 

correlated to BclPr and to Ra,  + R a ,  = 16Ra( 1 +a) .  Dulieu et al. (1981) agree on the 
role of a, but not on that of Ra.  I n  fact, Agar & Turner (1960) considered the case 
of a strictly vertical cell (originally subjected to a strictly vertical temperature 
gradient) a t  which they applied, a t  t = 0, a temperature alteration able to generate 
horizontal components of both thermal and solutal gradients. Both these gradients 
will tend to reestablish the initial equilibrium, after some delay, by generating a 
motion. Using Gr, = Ra/Pr  and considering that T,. - Pr and S, - Sc, the strength 
of this ‘restoring’ motion can be expressed in the V-plane (containing the main flow 
due to  disturbances), as 

V - Gr,(T,+XS,) - Gr,(Pr+XXc) = R a ( l + a ) .  (25)  

Thus, in the case of a strictly vertical cylinder as considered by Agar & Turner (1960), 
the velocity of the flow which tends to restabilize the system is closely proportional 
to Ra. The stronger Ra is the sooner the strictly vertical gradients will be restored. 
This is a fundamental difference with the case of a quasi-vertical cell where a 
horizontal temperature gradient is maintained and where the solutal gradient only 
is able to restabilize the system. 

9. Conclusion 
We have studied the Soret separation in a differentially heated cylinder. As soon 

as such a cylinder is slightly inclined, a t  a small angle y ,  the mixture inside is 
subjected to the thermal buoyancy which generates a flow. For the case considered 
herein (elongated cylinder ( A  = 3), moderate Prandtl number (Pr  = 0.6), high 
Schmidt number (Sc = 60) and positive S), this flow does not distort the temperature 
profiles except for the small values of X combined with high values of Gr. In  these last 
cases, the isotherm deformation remains weak (pT - l o ) ,  but it can considerably 
modify the thermal buoyancy forces, FT, mainly in the centre where the motion may 
be vanishing. In  the other cases (small Gr or moderate 8)  when the isotherms are not 
distorted, we have FT = sin y .  

If the iso-mass-fraction deformation, px, is weak and smaller than y ,  which is the 
case for small Gr, the mass-fraction reinforces the flow but this flow remains weak 
and the separation is still very good. If px y (for higher Gr),  the roles of X and T 
are opposite: the solutal buoyancy tends to  slow down the motion. In  fact, for 
moderate S, the solutal buoyancy is strong enough to balance the driving thermal 
buoyancy and to create a rest state in most of the cell, providing a good separation. 
On the other hand, for small S, the solutal buoyancy does not permit such a rest state 
to be reached (except in the centre) ; it only slows down the motion and does not 
prevent poor separation, for high Gr. Finally, the smaller the Soret coefficient is, the 
smaller the inclination defect y has to be to allow a good separation rate. 

In  addition, our results in a quasi-vertical cylinder show that a mixture 
corresponding to high Xc (liquid metals, molten salts, etc.) and particularly a mixture 
corresponding to low Pr  (liquid metals) could present strong concentration 
inhomogeneities, in the vertical direction, due to the thermal (Soret) diffusion and in 
the radial direction due to the thermally driven convection induced by even a small 
geometrical defect in the heating system. This point could be of interest in crystal 
growth or solidification techniques like the ‘vertical Bridgman ’, as it indicates the 
possible occurrence of a radial macrosegregation near the solidification front. 



Soret separation in a quasi-vertical cylinder 199 

The authors thank the Centre National d’Etudes Spatiales (Division Microgravit4 
Fondamentale et Appliquke) for giving financial support, and the Centre de Calcul 
Vectoriel pour la Recherche for providing them with computing time on the Cray-1S 
computer. They warmly acknowledge Professor R. Sani for fruitful discussions and 
reviewers for pertinent remarks and suggestions. 

R E F E R E N C E S  

ABERNATHEY, J. R. & ROSENBERGER, F. 1981 Soret diffusion and convective stability in a closed 
vertical cylinder. Phys. Fluids 24, 377-381. 

AGAR, J. N. & TURNER, J. C. R. 1960 Thermal diffusion in solutions of electrolytes. Proc. R .  SOC. 
Lond. A255, 307-330. 

BERT, J., HENRY, D., LAYANI, P., CHUZEVILLE, G., DUPUY, J. & ROUX, B. 1984 Space experiment 
on thermal diffusion-preparation and theoretical analysis. In Proc. Fqth  European Symposium 
on Materiai Sciences under Microgravity (ESA SP-222), pp. 347-351. ESA Publ. Division c/o 
ESTEC, Noordwijk, The Netherlands. 

BERT, J. MOUSSA, I .  & DUPUY, J. 1987 Space thermal diffusion experiment in a molten AgI-KI 
mixture. In Proc. Sixth European Symposium on Material Sciences under Microgravity (ESA 
SP-256), pp. 471-475. ESA Publ. Division c/o ESTEC, Noordwijk, The Netherlands. 

CALDWELL, D. R. 1973 Measurement of negative thermal diffusion coefficients by observing the 
onset of thermohaline convection. J .  Phys. Chem. 77, 2004-2008. 

CHIEN, C. P. & MATTES. B. L. 1983 Thermal Soret diffusion in the liquid phase epitaxial growth 
of binary III-V compounds. J .  Vac. Sci. Technol. B Microelec. Proc. and Phen. 1, 648-655. 

CHOCK, D. P. & LI, C. H. 1975 Direct integration method applied to Soret-driven instability. 

CRESPO, E. & VELARDE, M. G. 1982 Two component-Bdnard convection in cylinders. Intl J .  Heat 

DE GROOT, S.  R. 1947 L’eSfeet Soret. North-Holland. 
DULIEU, B., CHANU, J. & WALCH, J. P. 1981 Apropos de l’influence de la convection sur la mesure 

de l’effet Soret: le cas d’un d6faut d’horizontalite. J .  Chim. Phys. 78, 193-201. 
GUTKOWICZ-KRUSIN, D., COLLINS, M. A. & ROSS, J. 1979 Rayleigh-Bdnard instability in 

nonreactive binary fluids. 11. Results. Phys. Fluids 22, 1451-1460. 
HARDIN, G. R., SANI, R. L., HENRY, D. & Roux, B. 1988 Buoyancy driven instability in a vertical 

cylinder: Binary fluid with Soret effect. Part 1. General theory and stationary stability results. 
Intl J .  N u m .  Math Fluids. (submitted). 

Phys. Fluids 18, 1401-1406. 

Mass Transfer 25, 1451-1456. 

HARP, E. J. & HURLE, D. J. T. 1968 Phil. Mag. 17, 1033. 
HART, J. E. 1971 On sideways diffusive instability. J .  Fluid Mech. 49, 279-288. 
HART, J. E. 1973 Finite amplitude sideways diffusive instability. J .  Fluid Mech. 59, 47-64. 
HENRY D. 1986 Simulation numdrique 3D des mouvements de convection thermosolutale d’un 

melange binaire - dtude paramdtrique de l’influence de la convection sur la separation des 
espkces du mdlange, par effet Soret, dans un cylindre inclind. Thkse de Doctorat d’Etat, 
Universitd Claude Bernard Lyon I. 

HENRY, D. 8: Roux, B. 1983 Stationary and oscillatory instabilities for mixture subjected to 
Soret effect in vertical cylinder with axial temperature gradient. In Proc. Fourth European 
Symposium on Material Sciences under Microgravity (ESA SP-191), pp. 145-152. ESA Publ. 
Division c/o ESTEC, Noordwijk, The Netherlands. 

HENRY, D. & Roux, B. 1986 Three-dimensional numerical study of convection in a cylindrical 
thermal diffusion cell: its influence on the separation of constituents. Phys. Fluids 29, 

HENRY, D. & Roux, B. 1987a Three-dimensional numerical study of convection in a cylindrical 
thermal diffusion cell : inclination effect. Phys. Fluids 30, 1656-1666. 

HENRY, D. & Roux, B. 19876 Numerical study of the perturbation of Soret experiments by 3D 
buoyancy driven flows. In Proc. Sixth European Symposium on Material Sciences under 
Microgravity (ESA SP-256), pp. 487491. ESA Publ. Division c/o ESTEC, Noordwijk, The 
Netherlands. 

3562-3572. 



300 

HUPPERT, H. E. & TURNER, J. S. 1981 Double-diffusive convection. J .  Fluid Mech. 106,299-329. 
HURLE, D. T. J .  & JAKEMAN E. 1969 Significance of the Soret effect in the RayleighJeffreys’ 

HURLE, D. T. J. & JAKEMAN, E. 1971 Soret-driven thermosolutal convection. J .  Fluid Mech. 47, 

HURLE, D. T. J. & JAKEMAN, E. 1973 Thermal oscillations in convecting fluids. Phys. Fluids 16, 

LEGROS, J. C., VAN HOOK, W. A. & THOMAES, G. 1968 Convection and thermal diffusion in a 
solution heated from below. Chem. Phys. Lett. 2, 249-250. 

LEGROS, J. C., R,ASSE, D. & THOMAES, G.  1970 Convection and thermal diffusion in a solution 
heated from below. Chem. Phys. Lett. 4, 1383-1385. 

LEONG, S. S. & I)E VAHL DAVIS, G. 1979 Natural convection in a horizontal cylinder. In Proc. 
First Intl Conf. on Numerical Methods in Thermal Problems, University College, Swansea, 
pp. 287-296. Pineridge. 

LONGREE, D., LEGROS, J .  C. & THOMAES, G. 1980 Measured Soret coefficients for simple liquified 
gas mixture at low temperatures. J. Phys. Chem. 84, 3480-3483. 

MALMEJAC, Y. &, PRAIZEY, J. P. 1984 Thermomigration of cobalt in liquid tin. In Proc. Fifth 
European Symposium m Material Sciences under Microgravity (ESA SP-222), pp. 147-152. 
ESA Publ. Division c/o ESTEC, Noordwijk, The Netherlands. 

OLSON, J. M. & ROSENBERGER, F. 1979 Convective instabilities in a closed vertical cylinder heated 
from below. Part 2. Binary gas mixtures. J .  Fluid Mech. 92, 631-642. 

PALIWAL, R. C. & CHEN, C. F. 1980a Double-diffusive instability in an inclined fluid layer. Part  
1. Experimental investigation. J .  Fluid Mech. 98, 755-768. 

PALIWAL, R. C. & CHEN, C. F. 1980b Double-diffusive instability in an inclined fluid layer. Part 
2 .  Stability analysis. J .  Fluid Mech. 98, 769-785. 

PLATTEN, J. K.  & CHAVEPEYER, G. 1972 Soret driven instability. Phys. Fluids 15, 1555-1557. 
PLATTEN, J. K. & CHAVEPEYER, G. 1976 InstabilitB et  flux de chaleur dans le problkme de BBnard 

L deux constituants aux coefficients de Soret positifs. Intl J .  Heat Mass Transfer 19, 27-32. 
PLATTEN, J. K.  & CHAVEPEYER, G. 1977 Nonlinear two dimensional BBnard convection with 

Soret effect: free boundaries. Intl J. Heat Mass Transfer 20, 113-122. 
PLATTEN, J. K.  & LEGROS, J. C. 1984 Convection in Liquids, pp. 650-652. Springer. 
PRAIZEY, J. P. 1987 Results of the D1-WL-GHF-07 thermomigration in metallic alloys. In Sixth 

European Symposium on Material Sc,iences under Microgravity (ESA SP-256), pp. 501-508. 
ESA Publ. Division c/o ESTEC, Noordwijk, The Netherlands. 

SCHECHTER, R. S., PRIGOGINE, I.  & HAMM, J. R. 1972 Thermal diffusion and convective stability. 
Phys. Fluids 15, 379-386. 

SCHECHTER, R. S., VELARDE, M. G. & PLATTEN, J .  K. 1974 The two-component Bbnard problem. 
Adv. Chern. Phys. 26, 265-301. 

SHIRTCLIFFE, T. G. L. 1969 An experimental investigation of thermosolutal convection a t  
marginal stability. J .  FEuid Mech. 35, 677-688. 

SMUTEK, C., Roux, B., BONTOUX, P. & DE VAHL DAVIS, G. 1984 3D finite difference for natural 
convection in cylinders. In Proc. Fifth Gesellschaft fur Angewandte Mathemt ik  und Mechanik- 
Conference. Notes on Numerical Fluid Mechanics, vol. 7 ,  pp. 338-345. Vieweg. 

SUNDHEIM, B. R. & KELLNER, J. D. 1965 Thermoelectric properties of the molten silver 
nitratesodium nitrate system. J .  Phys. Chem. 69, 1204-1208. 

THOMAES, G. 1975 The BBnard instability in liquid mixtures. Adv.  Chem. Phys. 32, 269-279. 
THORPE, S. A., HUTT, P.  K. & SOULSBY, R. 1969 The effect of horizontal gradients on 

thermohaline convection. J .  Fluid Mech. 38, 375-400. 
TURNER, J .  S. &, CHEN, C. F. 1974 Two-dimensional effects in double-diffusive convection. 

J .  Fluid Mech. 63, 577-592. 
VELARDE, M. G. & SCHECHTER, R. S. 1971 Thermal diffusion and convective stability: a critical 

survey of Soret coefficient measurements. Chem. Phys. Lett. 12, 312-315. 
VERHOEVEN, J. D. 1969 Experimental study of thermal convection in a vertical cylinder of 

mercury heated from below. Phys. Fluids 12, 1733-1740. 

D. Henry and B. Roux 

problem. Phys. Fluids 12, 2704-2705. 

667-688. 

2056-2059. 


